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Abstract. We consider the two-photon propagation process under the two-fold approximation
that (i) the excitation of the upper level of medium molecules remains small during the process,
(ii) the intensity of one of the two participating electromagnetic waves is always small compared
to that of the other wave. It is then shown that in the limit of the strong dynamical Stark effect
the equations describing this process can be reduced to the classical Thirring model equations.
This reduction permits one to develop a much simpler theory of wave interaction than was
possible in the case of the original equations. As an example, the periodic solutions of two-
photon propagation are considered and the Whitham modulational equations are obtained. The
different forms ofU–V pairs for the Thirring model are discussed in the appendix. Analogous
theory can be developed for the stimulated Raman scattering process.

1. Introduction

The propagation of light waves in a resonant medium has been widely investigated,
both experimentally and theoretically. In particular, two-photon propagation (TPP) and
stimulated Raman scattering (SRS), i.e. the coherent propagation of two light beams under
the condition of a second-order resonance, have been the focus of considerable theoretical
interest (see, e.g. the review article [1]). Currently the progress in optical techniques has
advanced to the point where atomic inversion can be achieved by means of coherent TPP
[2] or SRS [3] techniques. All this is evidence that further theoretical progress became
topical.

An important property of TPP and SRS equations is their integrability in the sense
of the inverse scattering transform (IST) method first established in [4, 5]. This permits
one to obtain exact soliton [5], multisoliton [6], and periodic [7–10] solutions of these
equations and investigate some particular cases of evolution of pulses which are short
compared with the relaxation and inhomogeneous broadening times. Clearly the two-photon
processes of TPP or SRS types might be enhanced by several orders of magnitude when
a third level is in a near-to-resonance configuration, cf figure 1. According to numerical
estimations given in [5], a few MW cm−2 are enough to generate soliton-type structures in
the subnanosecond region. For such TPP experiments potassium—wherenon-degenerate
two-photon selfinduced transparencywas already found in 1972 [11]—would be a possible
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Figure 1. Scheme of transitions in a three-level system in the case of two-photon propagation.
Electromagnetic field frequenciesω1 andω2 resonate approximately with the atomic transitions
3→ 1 and 2→ 3 (frequencies�31 and�23, respectively), which leads to two-photon emission
and absorption processes between levels 1 and 2.

candidate while, with respect to analoguos SRS experiments, one may have stimulated
electronic Raman scattering in indium, in mind [3].

In this paper we wish to note that, in the limit when one electromagnetic wave is much
stronger than the other and the inversion of the upper level of the medium is low, the TPP
and SRS equations can be reduced to the classical massive Thirring model equations [12],
if the coupling constant that describes both the dynamical Stark effect and a population-
dependent refraction index is large enough. The Thirring model equations are much simpler
than the TPP and SRS equations, so the nonlinear processes can be investigated more easily
and in greater detail. These conditions of different magnitudes of wave intensity and low
inversion of the upper level may be met in experiment, and this simplification of the theory
may become important from a practical point of view. For simplicity, we shall only consider
here the TPP case, since the calculations for the SRS case are quite analogous.

Before going on to the formal treatment, let us show that the limit under consideration
is quite reasonable from a physical point of view, in particular, for such a three-level system
as that mentioned above and shown schematically in figure 1. We consider the propagation
of two electromagnetic waves with electric field envelopesE1 andE2 and frequenciesω1

andω2 in a three-level system where electric dipole transitions 2→ 3, 3→ 1 are allowed
and�23, �31 denote the exact (one-photon) resonant frequencies. Then, we assume that

�31− ω1 = ω2−�23 = δω |δω| � �31, �23 (1)

such that the two waves are at exact resonance with respect to a two-quantum transition
between levels 1 and 2.

In physical units, the Maxwell equations reduce in a slowly varying envelope
approximation to (see, e.g., [5])

∂E1

∂x
+ 1

c

∂E1

∂t
= −ib1

21R3E1+ ikE∗2R−

∂E2

∂x
+ 1

c

∂E2

∂t
= −ib2

21R3E2+ ikE∗1R−.
(2)

Herec denotes the group velocity which is assumed to be the same at both frequencies. The
Bloch vectorR = (R1, R2, R3), R± = R1 ± iR2, describes an effective two-level system
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with levels 1 and 2 and satisfies the following equations of motion

∂R+
∂t
= 2i(b1

21|E1|2+ b2
21|E2|2)R+ + 2ikE∗2E

∗
1R3

∂R3

∂t
= ik(E1E2R+ − E∗1E∗2R−).

(3)

The terms containing the constantsbF21 (F = 1, 2 is an index of the waveEF ) describe
either an inversion-dependent susceptibility in equation (2) or the dynamical Stark effect
in (3), andk is the coupling constant corresponding to two-photon transitions. Quantum
mechanical perturbation theory leads to the following expressions for these constants (see
[5, 13])

b1
21 = −

h̄

ε0

|k1
13|2
λ1

1

δω

b2
21 = −

h̄

ε0

|k2
23|2
λ2

1

δω

k = 2h̄

ε0

k2
23k

1
31√

λ1λ2

1

δω

(4)

wherekFpq are the dipole matrix elements of the transitions between levelsp and q, and
λF = ωF/c is the wavelength of the corresponding electromagnetic wave. As shown in [5],
the only essential dimensionless parameter in this problem is the relative dynamical Stark
shift coefficient

1 = (b1
21+ b2

21)/k (5)

and estimations (4) lead to the following inequality for its absolute value

|1| = f31/λ1+ f23/λ2

2
√
f31f23/λ1λ2

> 1 (6)

where we have introduced more common oscillator strengthsfpq ∝ |kFpq |2 of the transitions.
Actually, the Thirring approximation corresponds to the first essential terms in the series
expansion of soliton formulae with respect to powers of small parameter 1/12, which, as
we see from inequality (6), can be achieved in the case of large enough asymmetry in the
values off31/λ1, f23/λ2. This justifies an application of the Thirring model approximation
to TPP and SRS optical problems.

The Thirring model approximation is also rather interesting from a mathematical point
of view. It is well known that integrability is a very subtle property of an equation and
can easily be violated by any approximation. For example, an integrable sine–Gordon
equationutt −uxx + sinu = 0 loses its integrability under the Klein–Gordon approximation
utt − uxx + u − u3/6 = 0 correct at|u| � 1. Naturally, TPP and SRS equations become
nonintegrable in analogous approximations but TPP and SRS equations have an additional
parameter1, and integrability of their approximation is restored in the limit|1| � 1.
This observation reveals new interconnections between different classes of equations and is
worthy of thorough investigation.

In the next section we investigate the limit of the TPP equations mentioned above.
We find that this limit leads to a new form of theU–V pair for the Thirring model
which is different from the standard one [14, 15]. This ambiguity in theU–V pairs in
the Thirring model is considered in the appendix by means of the prolongation method.
The last section of the paper is devoted to the derivation of the periodic solutions of the
Thirring model equations by means of the finite-gap integration method (see, e.g., [16],
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[17]). We find that the modification of this method suggested in [18] and applied later to a
number of integrable equations [19] permits us to obtain periodic solutions in a form suitable
for physical applications. In addition, the Whitham equations describing the evolution of
modulated periodic solutions are obtained in a convenient form. These results form a basis
for applications of the developed theory to concrete physical problems.

2. The reduction of the TPP equations to the Thirring model equations

As was mentioned in the introduction, for simplicity we consider only the TPP case. The
SRS case can be considered in the same way with minor changes. The TPP equations
describe the propagation of two electromagnetic waves with frequenciesω1 and ω2 and
electric fields envelopesE1 andE2 interacting with a two-level system where the energy
separation is just ¯h(ω1 + ω2) and a two-photon transition is allowed between both these
levels. The field amplitudes might be scaled such thatE1E

∗
1 andE2E

∗
2 are the respective

photon current densities. The equations acquire a rather symmetric form if we introduce
the vectorS with components [5]

S1 = (E∗1E∗2 + E2E1)/I S2 = i(E∗1E
∗
2 − E2E1)/I S3 = (E1E

∗
1 + E2E

∗
2)/I (7)

whereI = I (t ′) = E1E
∗
1−E2E

∗
2 is the difference between the two-photon current densities,

which is a function of the retarded timet ′ = t − x/c only (x is a space coordinate along
which the waves propagate andc is their group velocity). We assume thatI (t ′) is always
positive. Now we may introduce

τ = k
∫ t

t0

I (t ′) dt ′

as a new variable instead oft ′, where k is the coupling constant for the two-photon
interaction process. If we also introduce the dimensionless space coordinateξ and the Bloch
vectorR describing the state of the medium (R± = R1 ± iR2 correspond to nondiagonal
elements of the density matrix andR3 to the difference between populations of the upper
and lower levels of the molecules), then the TPP equations take the form [4, 5]

∂R+
∂τ
= i(1R+S3+ R3S+)

∂R3

∂τ
= i

2
(R+S− − R−S+)

∂S+
∂ξ
= i(1S+R3− S3R+)

∂S3

∂ξ
= i

2
(S+R− − S−R+)

(8)

whereS± = S1 ± iS2 and1 is the relative dynamic Stark shift coefficient (see (5)). The
vectorsR andS are normalized according to the conditions

R2
1 + R2

2 + R2
3 = 1 − S2

1 − S2
2 + S2

3 = 1. (9)

In the limit of low population of the upper level we haveR3 ' −1, that is|R±| � 1
and hence

R3 = −
√

1− R+R− ' −1+ 1
2R+R−. (10)

Now let us suppose that the field strength of one field is much less than that of the other,

|E2| � |E1|.
Then S+ = 2E1E2 and S− = 2E∗1E

∗
2 are small compared toS3 = |E1|2 + |E2|2 and

consequently

S3 =
√

1+ S+S− ' 1+ 1
2S+S−. (11)
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On substituting the approximations (10) and (11) into equations (8), we obtain the
following system of two equations

−i
∂R+
∂τ
= 1R+ − S+ + 1

2
S+S−R+ + 1

2R+R−S+

i
∂S+
∂ξ
= 1S+ + R+ − 1

2
R+R−S+ + 1

2S+S−R+.
(12)

The second pair of equations (8) is satisfied automatically as a consequence of (12). The
first terms on the right-hand sides of equations (12) can be eliminated by means of the
substitutions

S+ → S+ exp[i1(ξ − τ)] R+ → R+ exp[−i1(ξ − τ)]. (13)

In addition, for the sake of comparison with standard notation, it is convenient to make the
replacements

S± → −S± ξ →−ξ (14)

so that

i
∂R+
∂τ
+ S+ + 1

2
S+S−R+ − 1

2R+R−S+ = 0

−i
∂S+
∂ξ
+ R+ + 1

2
R+R−S+ + 1

2S+S−R+ = 0.
(15)

The last two terms in each of these two equations have the same order of magnitude with
respect to small parameters|R±|, |S±| � 1; but in the limit of strong dynamical Stark shift

|1| � 1 (16)

the last terms can be neglected and we come to the standard form of the Thirring model
equations (12)–(15)

i
∂R+
∂τ
+ S+ + 1

2
S+S−R+ = 0

−i
∂S+
∂ξ
+ R+ + 1

2
R+R−S+ = 0.

(17)

Let us consider the corresponding limit of theU–V pair of the TPP equations. As was
shown in [4, 5], the TPP equations can be presented as a compatibility condition of two
linear systems,

∂ψ

∂τ
= Uψ ∂ψ

∂ξ
= Vψ (18)

whereψ = (ψ1, ψ2)
T andU,V are 2×2 matrices of the AKNS scheme [20]:

U =
(
F G

H −F
)

V =
(
A B

C −A
)
. (19)

The compatibility condition of two linear systems (18) has the form

∂V

∂τ
− ∂U
∂ξ
+ VU − UV = 0 (20)

and leads to the TPP equations (8) if we take

F = −iζS3 G = (ζ + σ)S+ H = (ζ − σ)S− (21)

A = i

2

(
1+ 1

2ζ +1
)
R3 B = − ζ + σ

2ζ +1R+ C = − ζ − σ
2ζ +1R− (22)
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where the parameterσ is connected with1 according to

σ 2 = 1
4(1+12) (23)

andζ is an arbitrary spectral parameter.
With the use of the approximations (10) and (11) and accounting for the replacements

(13) and (14), we obtain from (21) and (22) the matrix elements of the newU–V pair,

F = iλ2+ i1

4
S+S− G = λ2S+ H = 1S− (24)

A = − i

4λ2
− i1

4
R+R− B = 1

2R+ C = 1

2λ2
R− (25)

where the new spectral parameterλ is introduced according to definition

ζ = −1
2
− λ2 (26)

(we shall not use notationλF for wavelength anymore). It is easy to check that the
compatibility condition (20) with matrix elements (24), (25) corresponds to the Thirring
equations (17). The integrability of Thirring equations was first established in [14], but
theU–V pair found in [14] was different from (24), (25). The origin of this ambiguity is
discussed in the appendix.

Thus we have found that the classical Thirring model in its original form has an optical
application as a corresponding limit of the TPP or SRS equations†. Now we shall study the
periodic solutions of the Thirring model equations.

3. Periodic solutions of Thirring model equations

3.1. General periodic solutions

The periodic problem for the Thirring model was first discussed in [22]. Here we derive it
in a more effective form with the use of the method suggested in [18].

The simplest approach [23–25] to the finite-gap method is based on the introduction of
the ‘squared basic functions’ built from two basic solutions,ψ = (ψ1, ψ2) andφ = (φ1, φ2),
of linear systems (18) according to definitions

f = − 1
2i(ψ1φ2+ ψ2φ1) g = ψ1φ1 h = −ψ2φ2. (27)

The functionsψ , φ satisfy different boundary conditions (in the nonperiodic case they have
opposite asymptotics atτ →∞), so thatf , g andh are algebraic functions of the spectral
parameterλ and their evolution with change ofτ andξ is governed by the following systems
of linear equations

∂f/∂τ = −iHg + iGh ∂f/∂ξ = −iCg + iBh

∂g/∂τ = 2iGf + 2Fg ∂g/∂ξ = 2iBf + 2Ag

∂h/∂τ = −2iHf − 2Fh ∂h/∂ξ = −2iCf − 2Ah

(28)

which are consequences of (18), (19).
The functions (27) can be considered as spherical components of the vector whose length

is conserved during the evolution governed by the equations (28). That is, the quantity

f 2− gh = P(λ) (29)

† It is worth noting that the application of the Thirring model to optical solitons in a fibre was discussed in [21].
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does not depend onξ and τ , so thatP is function of λ only. The periodic solutions
are distinguished by the condition thatP = P(λ) be a polynomial inλ [23–25]. Seeking
solutions of systems (28) in the form of polynomials inλ, it is easy to find that the functions
f , g, h can contain only even degrees ofλ. Consequently,P(λ) is also a polynomial inλ
containing only even degrees ofλ. The single-phase solution corresponds, as we shall see,
to the eight-degree polynomialP(λ)

P (λ) =
4∏
i=1

(λ2− λ2
i ) = λ8− s1λ6+ s2λ4− s3λ2+ s4 (30)

where±λi are the zeros of the polynomial. Then the systems (28) give the solution

f = λ4− f1λ
2+ f2 g = −λ2S+(λ2− µ) h = −1S−(λ2− µ∗) (31)

providedf1, f2, µ, µ
∗ satisfy the equations

∂S+
∂τ
= 2i

(
f1− µ+ 1

4
S+S−

)
S+

∂S+
∂ξ
= −iR+ − i1

2
R+R−S+ (32)

∂f1

∂τ
= i1S+S−(µ− µ∗) ∂f1

∂ξ
= − i1

2
(S+R− − S−R+) (33)

f2 = constant µ = 2f2
R+
S+

(34)

∂(S+µ)
∂τ

= 2iS+f2+ i1

2
S2
+S−µ

∂(S+µ)
∂ξ

= −iR+f1+ i

2
S+ − i1

2
R+R−S+µ. (35)

On substituting (32) and (33) into (35), we find the evolution equations for the parameterµ

∂µ

∂τ
= 2if (µ1/2) = 2i

√
P(µ1/2)

∂µ

∂ξ
= 1

4f2

∂µ

∂τ
. (36)

Thus,µ depends only on the phase

W = 1

2

(
τ + ξ

4f2

)
dµ

dW
= 4i

√
P(µ1/2) (37)

and moves along some curve in the complex plane asW varies. This curve is determined
implicitly by constraint (29) and it is convenient to find it explicitly [18, 19]. Substitution
of (30) and (31) into (29) leads to the identity

(λ4− f1λ
2+ f2)

2−1S+S−λ2(λ2− µ)(λ2− µ∗) = λ8− s1λ6+ s2λ4− s3λ2+ s4. (38)

We see that the parameter

ν = 1S+S− = 1|S+|2 (39)

can be chosen as a coordinate along the locus ofµ. Comparing the coefficients ofλk on
both sides of (38), we obtain the system

2f1+ ν = s1 f 2
1 + 2f2+ ν(µ+ µ∗) = s2

2f1f2+ νµµ∗ = s3 f 2
2 = s4

(40)

which coincides with the corresponding system for so-called derivative nonlinear Schrö-
dinger equation [18], so we can use the solution found there

f2 = ±√s4 (41)

µ(ν) = 1

8ν

[
4s2± 8

√
s4− (ν − s1)2+ i

√
−R(ν)

]
(42)
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where the ‘resolvent’R(ν) is a fourth-degree polynomial inν :

R(ν) = ν4− 4s1ν
3+ (6s1− 8s2± 48

√
s4
)
ν2

− (4s3
1 − 16s1s2+ 64s3± 32s1

√
s4
)
ν + (−s2

1 + 4s2± 8
√
s4
)2
. (43)

The zerosνi , i = 1, 2, 3, 4, of this polynomial are related to the zeros ofP(λ) by simple
symmetric formulae [18]: the zeros

ν1 = (λ1+ λ2+ λ3− λ4)
2 ν2 = (λ1+ λ2− λ3+ λ4)

2

ν3 = (λ1− λ2+ λ3+ λ4)
2 ν4 = (−λ1+ λ2+ λ3+ λ4)

2
(44)

correspond to the upper sign in (43), and the zeros

ν1 = (λ1+ λ2+ λ3+ λ4)
2 ν2 = (λ1+ λ2− λ3− λ4)

2

ν3 = (λ1− λ2+ λ3− λ4)
2 ν4 = (−λ1+ λ2+ λ3− λ4)

2
(45)

correspond to the lower sign.
Equations (33) give us

dν

dW
= 4iν(µ∗ − µ)

and with the use of (42) we obtain

dν

dW
=
√
−R(ν). (46)

This equation can easily be resolved by means of elliptic functions. Ifν is known, the field
S+(ξ, τ ) can be found from the equations

dS+
dτ
= i

2
(2s1− ν − 4µ)S+

dS+
dξ
= i

2

(
s1± s3√

s4

)
S+ + 4f2

∂S+
∂ξ

which yield

S+(ξ, τ ) = exp

[
i

2

(
s1± s3√

s4

)
τ

]
S̃+(W) (47)

whereS̃+(W) must satisfy the equation

dS̃+
dW
= i

2
(2s1− ν − 4µ)S̃+. (48)

In the following we can suppose without loss of generality that1 > 0 and, hence,
ν > 0, too. It is clear that the zerosλi must be numbers such thatν oscillates between two
positive zeros of the resolventR(ν). The polynomialR(ν) has four zerosνi given by (44)
or (45) depending on a choice of a sign in (43). We shall consider only the cases when all
νi are real. It is convenient to enumerateλi so that

ν1 > ν2 > ν3 > ν4. (49)

Let us note the important particular cases.
(i) The zerosλi consist of two complex conjugate pairs

λ1 = α + iγ λ2 = α − iγ λ3 = β − iδ λ4 = β + iδ. (50)

Then (45) yields

ν1 = 4(α + β)2 ν2 = 4(α − β)2 ν3 = −4(γ − δ)2 ν4 = −4(γ + δ)2 (51)

where the variableν oscillates in the intervalν1 > ν > ν2, and (44) results in the complex
values ofνi.
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(ii) All four λi are real and

λ1 > λ2 > λ3 > λ4. (52)

Both (44) and (45) yield the real and positiveνi corresponding to different periodic solutions
for which the variableν oscillates in the intervalsν1 > ν > ν2 or ν3 > ν > ν4.

We now turn to finding the periodic solutions. Let us first discuss the case when the
variableν oscillates in the intervalν1 > ν > ν2. We choose initial conditions so thatν = ν1

atW = 0. Then equation (46) leads to the solution

ν = 1|S+|2

= (ν2− ν4)ν1+ (ν1− ν2)ν4sn2
(√
(ν1− ν3)(ν2− ν4)W/2, m

)
ν2− ν4+ (ν1− ν2)sn2

(√
(ν1− ν3)(ν2− ν4)W/2, m

) (53)

where the elliptic function parameter is given by

m = (ν1− ν2)(ν3− ν4)

(ν1− ν3)(ν2− ν4)
. (54)

This gives the squared modulus of the field componentS+, and equations (32) and (40)
yield an expression for squared modulus ofR+ component

|R+|2 = 1

4s41

[
s3∓√s4(s1− ν)

]
. (55)

The following calculations take a more convenient form in terms of the Weierstrass
elliptic functions. Let us introduce the zeros of the Weierstrass cubic by means of the
following expressions

e1 = 1

12
[2(ν1− ν3)(ν2− ν4)− (ν1− ν2)(ν3− ν4)]

e2 = 1

12
[2(ν1− ν2)(ν3− ν4)− (ν1− ν3)(ν2− ν4)]

e3 = − 1

12
[(ν1− ν3)(ν2− ν4)+ (ν1− ν2)(ν3− ν4)].

(56)

Then equation (53) can be written in the form

ν = ν1
℘(W)− ℘(ρ)
℘ (W)− ℘(κ) (57)

where the parametersκ andρ are defined by the expressions

℘(κ) = e3− 1
4(ν1− ν2)(ν1− ν3) ℘ (ρ) = e3− ν4

4ν1
(ν1− ν2)(ν1− ν3). (58)

After substitution of (57), (42) and (46) into (48), one can integrate the equation with the
use of the formula∫

dz

℘ (z)− ℘(κ) =
1

℘ ′(κ)

[
2zζ(κ)+ ln

σ(z − κ)
σ (z + κ)

]
(59)

where ζ and σ are the Weierstrass functions. After a simple calculation, we get the
expression for theS+ component

S+(ξ, τ ) =
√
ν1

1
exp

[
i

(
3

2
s1− ν1

2
−
√
ν1ν2ν3ν4

2ν1

)
W + (ζ(ρ)− ζ(κ))W

+ i

2

(
s1± s3√

s4

)
τ

]
σ(κ)σ (W − ρ)
σ(ρ)σ (W − κ) W = 1

2

(
τ ± ξ

4
√
s4

)
. (60)
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The case whenν oscillates in the intervalν3 > ν > ν4 can be considered in the same
way. Initial conditions are chosen so thatν = ν4 atW = 0. For ν we get the expression

ν = 1|S+|2 =
(ν1− ν3)ν4+ (ν3− ν4)ν1sn2

(√
(ν1− ν3)(ν2− ν4)W/2, m

)
ν1− ν3+ (ν3− ν4)sn2

(√
(ν1− ν3)(ν2− ν4)W/2, m

) (61)

or in terms of Weierstrass functions,

ν = ν4
℘(W)− ℘(ρ)
℘ (W)− ℘(κ) (62)

whereκ andρ are now defined by

℘(κ) = e3− 1
4(ν2− ν4)(ν3− ν4) ℘ (ρ) = e3− ν1

4ν4
(ν2− ν4)(ν3− ν4). (63)

The corresponding periodic solution of the Thirring model equations takes the form

S+(ξ, τ ) =
√
ν4

1
exp

[
i

(
3

2
s1− ν1

2
−
√
ν1ν2ν3ν4

2ν4

)
W − (ζ(ρ)− ζ(κ))W

+ i

2

(
s1± s3√

s4

)
ξ

]
σ(κ)σ (W + ρ)
σ(ρ)σ (W + κ) W = 1

2

(
τ ± ξ

4
√
s4

)
. (64)

The formulae obtained give the general periodic solutions of the Thirring model
equations.

3.2. Soliton limit

Let us consider the soliton limit of the solution (60), whenν2 = ν3, i.e.

e1 = e2 = a = 1
12(ν1− ν2)(ν2− ν4) e3 = −2a = − 1

6(ν1− ν2)(ν2− ν4). (65)

By means of the well known limiting expressions for the Weierstrass function, we obtain
from (60)

S+(ξ, τ ) = 1

2
√
1

exp

[
i

(
3

2
s1− ν2

2
−
√
ν1ν4

2

)
W + i

2

(
s1± s3√

s4

)
τ

]

×√ν1

sinh
(√

3aW
)

coth
(√

3aρ
)
+ cosh

(√
3aW

)
sinh

(√
3aW

)
coth

(√
3aκ

)
+ cosh

(√
3aW

) . (66)

Equations (63) give in this limit
√

3a coth
(√

3aκ
)
= − i

2
(ν1− ν2)

√
3a coth

(√
3aρ

)
= − i

2

√
ν4

ν1
(ν1− ν2). (67)

Let us denote

2θ =
√

3aW cos2
η

2
= ν2− ν4

ν1− ν4
(68)

so that

coth
(√

3aκ
)
= −i tan

η

2
coth

(√
3aρ

)
= −i

√
ν4

ν1
tan

η

2

and (66) can be transformed to the form

S+(ξ, τ ) = 1

2
√
1

exp

[
i

(
3

2
s1− ν2

2
−
√
ν1ν4

2

)
W + i

2

(
s1± s3√

s4

)
τ

]
×
[√
ν1+√ν4+

(√
ν1−√ν4

) cosh(2θ + iη/2)

cosh(2η − iη/2)

]
. (69)
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This solution describes soliton propagating on a constant background which can vanish for
some special cases.

The analogous soliton limit of the solution (64) has the form

S+(ξ, τ ) = 1

2
√
1

exp

[
i

(
3

2
s1− ν2

2
−
√
ν1ν4

2

)
W + i

2

(
s1± s3√

s4

)
τ

]
×
[√
ν1+√ν4−

(√
ν1−√ν4

) cosh(2θ − iη/2)

cosh(2η + iη/2)

]
. (70)

Consider some particular cases. Let

λ1 = λ4 = α + iγ λ2 = λ3 = α − iγ (71)

so that equations (45) (corresponding to the lower sign in above formulae) give

ν1 = 16α2 ν2 = ν3 = 0 ν4 = −16γ 2 (72)

and

cos2
η

2
= γ 2

α2+ γ 2
. (73)

It is convenient to introduce the parametrization

α = D sin
η

2
γ = D cos

η

2
. (74)

Substitution of these expressions into (69) leads to the soliton solution

S+ = 2D√
1

exp[i8(ξ, τ )]
sinη

cosh(2θ − iη/2)
(75)

whereθ = sinη(D2τ + ξ/D2) and8(ξ, τ ) is some phase which we are not interested in.
The ‘intensity’ equals

|S+|2 = 8D2 sin2 η

1

1

cosh 4θ + cosη
. (76)

This soliton solution can be obtained as an appropriate limit of the TPP soliton found in
[5]. Indeed, the TPP soliton solution is parametrized by the eigenvalue

ζ = α1+ iγ1

of the corresponding scattering problem (18), (19) and has the form

S3− 1= 2γ1 sin 2χ

σ

1

cosh(4γ1W)+ cos 2χ
(77)

where the parameterχ is defined by the relation

tanχ = 2σγ1

σ 2− α2
1 − γ 2

1

. (78)

The phaseW is equal to

W = τ − ξ
/
(4[(α1+1/2)2+ γ1]) (79)

andσ is given by (22). Taking into account (11), (14), (26) and (74), we rewrite the formula
(77) by means of identifications

α1+1/2= −Re (λ2) = −(α2− γ 2) = D2 cosη (80)

γ1 = −Im (λ2) = −2αγ = −D2 sinη (81)
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in the form

|S+|2 = −8D2 sinη sin(2χ)√
1+12

1

cosh[−4D2 sinη(τ + ξ/(4D4))] + cos 2χ
. (82)

Since equation (78) rewritten in new parameters

tan 2χ = −
√

1+12D2 sinη

1D2 cosη + 1
4 −D4

gives in the limit1→∞ the relation (atD2 ' 1
4 it is enough to have12� 1)

tan 2χ ' − tanη that is 2χ ' −η
it is easy to see that equation (82) immediately reduces to (76) in this limit.

Now let all theλi be real and equal to

λ1 = 1
2(α + β) λ2 = λ3 = 1

2β λ4 = − 1
2(α − β) (83)

so that

ν1 = 4β2 ν2 = ν3 = α2 ν4 = 0.

Then the field intensity corresponding to (69) is equal to

|S+|2 = 2β2

1

(cosh 4θ + 1)(cosη + 1)

cosh 4θ + cosη
(84)

where

θ =
√

3a

2
W = β2 sinη

4

(
τ + 2ξ

β2(α2− β2)

)
.

This is the ‘bright’ soliton solution on the constant background|S+|20 = α2/1.
Similarly, the intensity of solution (70) in the case (83) takes the form

|S+|2 = 2β2

1

(cosh 4θ − 1)(1− cosη)

cosh 4θ + cosη
(85)

which corresponds to the ‘dark’ soliton solution on the constant background.

3.3. Whitham equations

The periodic solutions are parametrized by four variablesλi , i = 1, 2, 3, 4, depending
on space and time coordinates in slightly nonuniform and nonstationary problems. The
evolution of λi in such problems is governed by the Whitham equations [26]. These
equations can be easily derived by well known averaging methods (see, e.g. [19]) and have
standard form. Therefore we shall write the final result here. The Whitham equations for
λi have the diagonal form

∂λ2
i

∂ξ
+ 1

vi

∂λ2
i

∂τ
= 0 i = 1, 2, 3, 4 (86)

where the group velocities are equal to

1

vi
=
(

1− T

∂iT
∂i

)
1

V
∂i ≡ ∂

∂λi
i = 1, 2, 3, 4 (87)

with periodT being given by

T = 1

2

∮
dµ√−P(µ) =

2K(m)√
(λ2

1− λ2
4)(λ

2
3− λ2

2)

(88)
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where K(m) is the complete elliptic integral of the first kind andV is the phase velocity of
nonlinear periodic wave

V = 2f2 = ±2

√√√√ 4∏
i=1

λ2
i . (89)

Note that these equations formally coincide with those for the AB system [27], but in the
case under consideration the variablesλi can be real, whereas in the AB system case they
are complex.

4. Conclusion

We have found that TPP and SRS equations can be reduced to the classical Thirring model
in one practically important limit and have obtained periodic solutions of the Thirring model
equations in an effective form including the corresponding modulation Whitham equations.
The analysis of the solutions of these modulation equations is rather complicated and will
be published elsewhere.
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Appendix

As we have found in section 2, the Thirring model equations

∂S+
∂ξ
= −iR+ − i1

2
R+R−S+

∂R+
∂τ
= iS+ + i1

2
S+S−R+ (A1)

can be presented as a compatibility condition

∂V

∂τ
− ∂U
∂ξ
+ [V,U ] = 0 (A2)

of two linear systems

∂ψ

∂τ
= Uψ ∂ψ

∂ξ
= Vψ (A3)

where

U =
(

iλ2+ i1S+S−/4 λ2S+
1S− −iλ2− i1S+S−/4

)
V =

(−i/(4λ2)− i1R+R−/4 R+/2
1R−/(2λ2) i/(4λ2)+ i1R+R−/4

)
.

(A4)
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On the other hand, in [14] theU–V pair corresponding to the Thirring model was found
in the form

U =
(

i1λ2/4+ i1S+S−/4 1λS+/2
1λS−/2 −i1λ2/4− i1S+S−/4

)
V =

(−i/(1λ2)− i1R+R−/4 R+/λ
R−/λ i/(1λ2)+ i1R+R−/4

)
.

(A5)

Let us consider this ambiguity by means of the prolongation method (see, e.g. [28]).
We shall look forU andV in the form

V = A+ BR+ + CR− +DR+R− U = E + FS+ + GS− +HS+S− (A6)

whereA,B, . . . ,H are unknown 2×2 matrices. On substituting (A6) into (A2) we obtain,
with the use of equations (A1), the system

[A, E ] = [D, E ] = [A,H] = [D,H] = [B,F ] = [C,G] = 0

iF + [B, E ] = 0 − iG + [C, E ] = 0 iB + [A,F ] = 0

−iC + [A,G] = 0 − iD + iH+ [B,G] = 0 iD − iH+ [C,F ] = 0

− i1

2
C + [C,H] = 0

i1

2
B + [B,H] = 0 − i1

2
G + [D,G] = 0.

This system can be satisfied if we take

E = eA D = dA H = hA F = fB G = gC (A7)

provided the following relations for commutators are fulfilled

[A,B] = if

e
B = − i

f
B = i1

2h
B = − i1

2d
B

[A, C] = − ig

e
C = i

g
C = − i1

2h
C = i1

2d
C

[B, C] = i(d − h)
g

A = i(d − h)
f

A.

(A8)

That is

f 2 = g2 = −e g = f d = −h = 1f

2
and (A8) can be written in the form

[A,B] = − i

f
B [AC] = i

f
C [B, C] = i1A. (A9)

It easy to see that these relations can be satisfied by means of the matricesσ± = (σ1± iσ2)/2
andσ3, whereσ1, σ2, σ3 are the Pauli matrices. Indeed, if we choose

A = ασ3 B = βσ+ C = γ σ− (A10)

then we must have

f = 1

βγ
α = − i

1
βγ

which leads to theU–V pair with two spectral parametersβ andγ :

U =
(

i1/(4βγ )+ i1S+S−/4 1S+/(2γ )
1S−/(2β) −i1/(4βγ )− i1S+S−/4

)
V =

(−iβγ/1− i1R+R−/4 βR+
γR− iβγ/1+ i1R+R−/4

)
.

(A11)
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At β = 1
2, γ = 1/(2λ2) we obtain theU–V pair in the form (A4), and atβ = γ = 1/λ

we return to (A5). Thus, the ambiguity under consideration arises due to the possibility of
two spectral parameters in theU–V representation of the classical Thirring model.
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